decrypter.js 12.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
/*
 *
 * This file contains an adaptation of the AES decryption algorithm
 * from the Standford Javascript Cryptography Library. That work is
 * covered by the following copyright and permissions notice:
 *
 * Copyright 2009-2010 Emily Stark, Mike Hamburg, Dan Boneh.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above
 *    copyright notice, this list of conditions and the following
 *    disclaimer in the documentation and/or other materials provided
 *    with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation
 * are those of the authors and should not be interpreted as representing
 * official policies, either expressed or implied, of the authors.
 */
import Stream from './stream';
import {unpad} from 'pkcs7';

/**
 * Convert network-order (big-endian) bytes into their little-endian
 * representation.
 */
const ntoh = function(word) {
  return (word << 24) |
    ((word & 0xff00) << 8) |
    ((word & 0xff0000) >> 8) |
    (word >>> 24);
};

/**
 * Expand the S-box tables.
 *
 * @private
 */
const precompute = function() {
  let _tables = [[[], [], [], [], []], [[], [], [], [], []]];
  let encTable = _tables[0];
  let decTable = _tables[1];
  let sbox = encTable[4];
  let sboxInv = decTable[4];
  let i;
  let x;
  let xInv;
  let d = [];
  let th = [];
  let x2;
  let x4;
  let x8;
  let s;
  let tEnc;
  let tDec;

  // Compute double and third tables
  for (i = 0; i < 256; i++) {
    th[(d[i] = i << 1 ^ (i >> 7) * 283) ^ i] = i;
  }

  for (x = xInv = 0; !sbox[x]; x ^= x2 || 1, xInv = th[xInv] || 1) {
    // Compute sbox
    s = xInv ^ xInv << 1 ^ xInv << 2 ^ xInv << 3 ^ xInv << 4;
    s = s >> 8 ^ s & 255 ^ 99;
    sbox[x] = s;
    sboxInv[s] = x;

    // Compute MixColumns
    x8 = d[x4 = d[x2 = d[x]]];
    tDec = x8 * 0x1010101 ^ x4 * 0x10001 ^ x2 * 0x101 ^ x * 0x1010100;
    tEnc = d[s] * 0x101 ^ s * 0x1010100;

    for (i = 0; i < 4; i++) {
      encTable[i][x] = tEnc = tEnc << 24 ^ tEnc >>> 8;
      decTable[i][s] = tDec = tDec << 24 ^ tDec >>> 8;
    }
  }

  // Compactify. Considerable speedup on Firefox.
  for (i = 0; i < 5; i++) {
    encTable[i] = encTable[i].slice(0);
    decTable[i] = decTable[i].slice(0);
  }
  return _tables;
}

let tables;

/**
 * Schedule out an AES key for both encryption and decryption. This
 * is a low-level class. Use a cipher mode to do bulk encryption.
 *
 * @constructor
 * @param key {Array} The key as an array of 4, 6 or 8 words.
 */
class AES {
  constructor(key) {
   /**
    * The expanded S-box and inverse S-box tables. These will be computed
    * on the client so that we don't have to send them down the wire.
    *
    * There are two tables, _tables[0] is for encryption and
    * _tables[1] is for decryption.
    *
    * The first 4 sub-tables are the expanded S-box with MixColumns. The
    * last (_tables[01][4]) is the S-box itself.
    *
    * @private
    */
    if (!tables) {
      tables = precompute();
    }
    this._tables = tables;
    let i;
    let j;
    let tmp;
    let encKey;
    let decKey;
    let sbox = this._tables[0][4];
    let decTable = this._tables[1];
    let keyLen = key.length;
    let rcon = 1;

    if (keyLen !== 4 && keyLen !== 6 && keyLen !== 8) {
      throw new Error('Invalid aes key size');
    }

    encKey = key.slice(0);
    decKey = [];
    this._key = [encKey, decKey];

    // schedule encryption keys
    for (i = keyLen; i < 4 * keyLen + 28; i++) {
      tmp = encKey[i - 1];

      // apply sbox
      if (i % keyLen === 0 || (keyLen === 8 && i % keyLen === 4)) {
        tmp = sbox[tmp >>> 24] << 24 ^
          sbox[tmp >> 16 & 255] << 16 ^
          sbox[tmp >> 8 & 255] << 8 ^
          sbox[tmp & 255];

        // shift rows and add rcon
        if (i % keyLen === 0) {
          tmp = tmp << 8 ^ tmp >>> 24 ^ rcon << 24;
          rcon = rcon << 1 ^ (rcon >> 7) * 283;
        }
      }

      encKey[i] = encKey[i - keyLen] ^ tmp;
    }

    // schedule decryption keys
    for (j = 0; i; j++, i--) {
      tmp = encKey[j & 3 ? i : i - 4];
      if (i <= 4 || j < 4) {
        decKey[j] = tmp;
      } else {
        decKey[j] = decTable[0][sbox[tmp >>> 24 ]] ^
          decTable[1][sbox[tmp >> 16 & 255]] ^
          decTable[2][sbox[tmp >> 8 & 255]] ^
          decTable[3][sbox[tmp & 255]];
      }
    }
  }

  /**
   * Decrypt 16 bytes, specified as four 32-bit words.
   * @param encrypted0 {number} the first word to decrypt
   * @param encrypted1 {number} the second word to decrypt
   * @param encrypted2 {number} the third word to decrypt
   * @param encrypted3 {number} the fourth word to decrypt
   * @param out {Int32Array} the array to write the decrypted words
   * into
   * @param offset {number} the offset into the output array to start
   * writing results
   * @return {Array} The plaintext.
   */
  decrypt(encrypted0, encrypted1, encrypted2, encrypted3, out, offset) {
    let key = this._key[1];
    // state variables a,b,c,d are loaded with pre-whitened data
    let a = encrypted0 ^ key[0];
    let b = encrypted3 ^ key[1];
    let c = encrypted2 ^ key[2];
    let d = encrypted1 ^ key[3];
    let a2;
    let b2;
    let c2;

    // key.length === 2 ?
    let nInnerRounds = key.length / 4 - 2;
    let i;
    let kIndex = 4;
    let table = this._tables[1];

    // load up the tables
    let table0 = table[0];
    let table1 = table[1];
    let table2 = table[2];
    let table3 = table[3];
    let sbox = table[4];

    // Inner rounds. Cribbed from OpenSSL.
    for (i = 0; i < nInnerRounds; i++) {
      a2 = table0[a >>> 24] ^
        table1[b >> 16 & 255] ^
        table2[c >> 8 & 255] ^
        table3[d & 255] ^
        key[kIndex];
      b2 = table0[b >>> 24] ^
        table1[c >> 16 & 255] ^
        table2[d >> 8 & 255] ^
        table3[a & 255] ^
        key[kIndex + 1];
      c2 = table0[c >>> 24] ^
        table1[d >> 16 & 255] ^
        table2[a >> 8 & 255] ^
        table3[b & 255] ^
        key[kIndex + 2];
      d = table0[d >>> 24] ^
        table1[a >> 16 & 255] ^
        table2[b >> 8 & 255] ^
        table3[c & 255] ^
        key[kIndex + 3];
      kIndex += 4;
      a = a2; b = b2; c = c2;
    }

    // Last round.
    for (i = 0; i < 4; i++) {
      out[(3 & -i) + offset] =
        sbox[a >>> 24] << 24 ^
        sbox[b >> 16 & 255] << 16 ^
        sbox[c >> 8 & 255] << 8 ^
        sbox[d & 255] ^
        key[kIndex++];
      a2 = a; a = b; b = c; c = d; d = a2;
    }
  }

}

/* eslint-disable max-len */
/**
 * Decrypt bytes using AES-128 with CBC and PKCS#7 padding.
 * @param encrypted {Uint8Array} the encrypted bytes
 * @param key {Uint32Array} the bytes of the decryption key
 * @param initVector {Uint32Array} the initialization vector (IV) to
 * use for the first round of CBC.
 * @return {Uint8Array} the decrypted bytes
 *
 * @see http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
 * @see http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_.28CBC.29
 * @see https://tools.ietf.org/html/rfc2315
 */
/* eslint-enable max-len */
export const decrypt = function(encrypted, key, initVector) {
  // word-level access to the encrypted bytes
  let encrypted32 = new Int32Array(encrypted.buffer,
                                   encrypted.byteOffset,
                                   encrypted.byteLength >> 2);

  let decipher = new AES(Array.prototype.slice.call(key));

  // byte and word-level access for the decrypted output
  let decrypted = new Uint8Array(encrypted.byteLength);
  let decrypted32 = new Int32Array(decrypted.buffer);

  // temporary variables for working with the IV, encrypted, and
  // decrypted data
  let init0;
  let init1;
  let init2;
  let init3;
  let encrypted0;
  let encrypted1;
  let encrypted2;
  let encrypted3;

  // iteration variable
  let wordIx;

  // pull out the words of the IV to ensure we don't modify the
  // passed-in reference and easier access
  init0 = initVector[0];
  init1 = initVector[1];
  init2 = initVector[2];
  init3 = initVector[3];

  // decrypt four word sequences, applying cipher-block chaining (CBC)
  // to each decrypted block
  for (wordIx = 0; wordIx < encrypted32.length; wordIx += 4) {
    // convert big-endian (network order) words into little-endian
    // (javascript order)
    encrypted0 = ntoh(encrypted32[wordIx]);
    encrypted1 = ntoh(encrypted32[wordIx + 1]);
    encrypted2 = ntoh(encrypted32[wordIx + 2]);
    encrypted3 = ntoh(encrypted32[wordIx + 3]);

    // decrypt the block
    decipher.decrypt(
      encrypted0,
      encrypted1,
      encrypted2,
      encrypted3,
      decrypted32,
      wordIx
    );

    // XOR with the IV, and restore network byte-order to obtain the
    // plaintext
    decrypted32[wordIx] = ntoh(decrypted32[wordIx] ^ init0);
    decrypted32[wordIx + 1] = ntoh(decrypted32[wordIx + 1] ^ init1);
    decrypted32[wordIx + 2] = ntoh(decrypted32[wordIx + 2] ^ init2);
    decrypted32[wordIx + 3] = ntoh(decrypted32[wordIx + 3] ^ init3);

    // setup the IV for the next round
    init0 = encrypted0;
    init1 = encrypted1;
    init2 = encrypted2;
    init3 = encrypted3;
  }

  return decrypted;
};

export class AsyncStream extends Stream {
  constructor() {
    super(Stream);
    this.jobs = [];
    this.delay = 1;
    this.timeout_ = null;
  }
  processJob_() {
    this.jobs.shift()();
    if (this.jobs.length) {
      this.timeout_ = setTimeout(this.processJob_.bind(this),
                                 this.delay);
    } else {
      this.timeout_ = null;
    }
  }
  push(job) {
    this.jobs.push(job);
    if (!this.timeout_) {
      this.timeout_ = setTimeout(this.processJob_.bind(this),
                                 this.delay);
    }
  }
}

// the maximum number of bytes to process at one time
const decrypterStep = 4 * 8000;

export class Decrypter extends Stream {
  constructor(encrypted, key, initVector, done) {
    super(Stream);
    let step = decrypterStep;
    let encrypted32 = new Int32Array(encrypted.buffer);
    let decrypted = new Uint8Array(encrypted.byteLength);
    let i = 0;

    this.asyncStream_ = new AsyncStream();

    // split up the encryption job and do the individual chunks asynchronously
    this.asyncStream_.push(this.decryptChunk_(encrypted32.subarray(i, i + step),
                                              key,
                                              initVector,
                                              decrypted));
    for (i = step; i < encrypted32.length; i += step) {
      initVector = new Uint32Array([ntoh(encrypted32[i - 4]),
                                    ntoh(encrypted32[i - 3]),
                                    ntoh(encrypted32[i - 2]),
                                    ntoh(encrypted32[i - 1])]);
      this.asyncStream_.push(this.decryptChunk_(encrypted32.subarray(i, i + step),
                                                key,
                                                initVector,
                                                decrypted));
    }
    // invoke the done() callback when everything is finished
    this.asyncStream_.push(function() {
      // remove pkcs#7 padding from the decrypted bytes
      done(null, unpad(decrypted));
    });
  }
  decryptChunk_(encrypted, key, initVector, decrypted) {
    return function() {
      let bytes = decrypt(encrypted, key, initVector);

      decrypted.set(bytes, encrypted.byteOffset);
    };
  }
}

Decrypter.STEP = decrypterStep;

export default {
  decrypt,
  Decrypter,
  AsyncStream
};