ranges.js
5.87 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/**
* ranges
*
* Utilities for working with TimeRanges.
*
*/
import videojs from 'video.js';
// Fudge factor to account for TimeRanges rounding
const TIME_FUDGE_FACTOR = 1 / 30;
const filterRanges = function(timeRanges, predicate) {
let results = [];
let i;
if (timeRanges && timeRanges.length) {
// Search for ranges that match the predicate
for (i = 0; i < timeRanges.length; i++) {
if (predicate(timeRanges.start(i), timeRanges.end(i))) {
results.push([timeRanges.start(i), timeRanges.end(i)]);
}
}
}
return videojs.createTimeRanges(results);
};
/**
* Attempts to find the buffered TimeRange that contains the specified
* time.
* @param {TimeRanges} buffered - the TimeRanges object to query
* @param {number} time - the time to filter on.
* @returns {TimeRanges} a new TimeRanges object
*/
const findRange = function(buffered, time) {
return filterRanges(buffered, function(start, end) {
return start - TIME_FUDGE_FACTOR <= time &&
end + TIME_FUDGE_FACTOR >= time;
});
};
/**
* Returns the TimeRanges that begin at or later than the specified
* time.
* @param {TimeRanges} timeRanges - the TimeRanges object to query
* @param {number} time - the time to filter on.
* @returns {TimeRanges} a new TimeRanges object.
*/
const findNextRange = function(timeRanges, time) {
return filterRanges(timeRanges, function(start) {
return start - TIME_FUDGE_FACTOR >= time;
});
};
/**
* Search for a likely end time for the segment that was just appened
* based on the state of the `buffered` property before and after the
* append. If we fin only one such uncommon end-point return it.
* @param {TimeRanges} original - the buffered time ranges before the update
* @param {TimeRanges} update - the buffered time ranges after the update
* @returns {Number|null} the end time added between `original` and `update`,
* or null if one cannot be unambiguously determined.
*/
const findSoleUncommonTimeRangesEnd = function(original, update) {
let i;
let start;
let end;
let result = [];
let edges = [];
// In order to qualify as a possible candidate, the end point must:
// 1) Not have already existed in the `original` ranges
// 2) Not result from the shrinking of a range that already existed
// in the `original` ranges
// 3) Not be contained inside of a range that existed in `original`
const overlapsCurrentEnd = function(span) {
return (span[0] <= end && span[1] >= end);
};
if (original) {
// Save all the edges in the `original` TimeRanges object
for (i = 0; i < original.length; i++) {
start = original.start(i);
end = original.end(i);
edges.push([start, end]);
}
}
if (update) {
// Save any end-points in `update` that are not in the `original`
// TimeRanges object
for (i = 0; i < update.length; i++) {
start = update.start(i);
end = update.end(i);
if (edges.some(overlapsCurrentEnd)) {
continue;
}
// at this point it must be a unique non-shrinking end edge
result.push(end);
}
}
// we err on the side of caution and return null if didn't find
// exactly *one* differing end edge in the search above
if (result.length !== 1) {
return null;
}
return result[0];
};
/**
* Calculate the intersection of two TimeRanges
* @param {TimeRanges} bufferA
* @param {TimeRanges} bufferB
* @returns {TimeRanges} The interesection of `bufferA` with `bufferB`
*/
const bufferIntersection = function(bufferA, bufferB) {
let start = null;
let end = null;
let arity = 0;
let extents = [];
let ranges = [];
if (!bufferA || !bufferA.length || !bufferB || !bufferB.length) {
return videojs.createTimeRange();
}
// Handle the case where we have both buffers and create an
// intersection of the two
let count = bufferA.length;
// A) Gather up all start and end times
while (count--) {
extents.push({time: bufferA.start(count), type: 'start'});
extents.push({time: bufferA.end(count), type: 'end'});
}
count = bufferB.length;
while (count--) {
extents.push({time: bufferB.start(count), type: 'start'});
extents.push({time: bufferB.end(count), type: 'end'});
}
// B) Sort them by time
extents.sort(function(a, b) {
return a.time - b.time;
});
// C) Go along one by one incrementing arity for start and decrementing
// arity for ends
for (count = 0; count < extents.length; count++) {
if (extents[count].type === 'start') {
arity++;
// D) If arity is ever incremented to 2 we are entering an
// overlapping range
if (arity === 2) {
start = extents[count].time;
}
} else if (extents[count].type === 'end') {
arity--;
// E) If arity is ever decremented to 1 we leaving an
// overlapping range
if (arity === 1) {
end = extents[count].time;
}
}
// F) Record overlapping ranges
if (start !== null && end !== null) {
ranges.push([start, end]);
start = null;
end = null;
}
}
return videojs.createTimeRanges(ranges);
};
/**
* Calculates the percentage of `segmentRange` that overlaps the
* `buffered` time ranges.
* @param {TimeRanges} segmentRange - the time range that the segment covers
* @param {TimeRanges} buffered - the currently buffered time ranges
* @returns {Number} percent of the segment currently buffered
*/
const calculateBufferedPercent = function(segmentRange, buffered) {
let segmentDuration = segmentRange.end(0) - segmentRange.start(0);
let intersection = bufferIntersection(segmentRange, buffered);
let overlapDuration = 0;
let count = intersection.length;
while (count--) {
overlapDuration += intersection.end(count) - intersection.start(count);
}
return (overlapDuration / segmentDuration) * 100;
};
export default {
findRange,
findNextRange,
findSoleUncommonTimeRangesEnd,
calculateBufferedPercent,
TIME_FUDGE_FACTOR
};